

Manual do Usuário

Versões Básica, Studio e Atmega – ed.10 - 08/2022

Atenção!

Seu equipamento possui partes elétricas, de cortes e pressão, que podem causar ferimentos e danos materias. Lembre-se que a **operação deste equipamento exige uso de Equipamentos de Proteção Individual** e que a instalação seja em ambiente de conformidade elétrica, livre combustíveis de qualquer ordem.

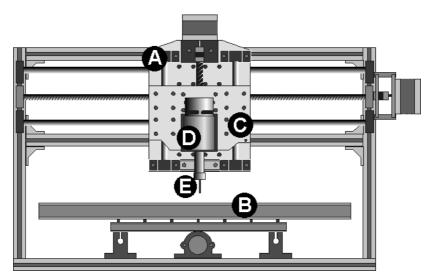
Por se tratar de equipamento especializado, é necessário que você compreenda tudo que envolve o uso e aplicação deste tipo de equipamento.

Evite modificar sua máquina e lembre-se que desconexões dos módulos podem interromper o funcionamento de sua máquina e os reparos não são cobertos por garantia.

Conhecendo sua Pipo 2024	5
Cabo USB	6
Preparação e Manutenção	7
Instalação	9
Software 1 - Desenho	13
Software 2 - JSCut	17
Software 3 - Candle / GRBL Control	28
Auto Nivelamento	36
Princípios de usinagem	36
Gravação	45
Prevenção e Aproveitameento	46
Troca de fresas em uma mesma peça	49

Apresentação

Parabéns pela aquisição de sua Dobit Pipo 2024 CNC Router.


Aqui iremos descrever cada detalhe de seu equipamento, os cuidados que você deve tomar e como utiliza-la tirando o maior proveito e aumentando a durabilidade de sua máquina.

Com sua Pipo 2024 você poderá fazer gravações de baixo e alto relevo, furação, corte e usinagem de peças em diversos tipos de materiais, para as mais diversas finalidades, e seu equipamento foi desenvolvido pensando na mais longa durabilidade. E para lhe ajudar nisso, este manual deve ser consultado frequentemente e mantido a seu alcance por toda a vida de sua máquina.

Aqui você encontra instruções, dicas de uso e manutenção de sua CNC, e é importante que você o conheça e permita que demais usuários do equipamento possam consulta-lo.

Parabéns pela aquisição e bom trabalho.

Conhecendo sua Pipo 2024

A: Carro do eixo X

B: Bandeja do eixo Y

C: Carro do eixo Z

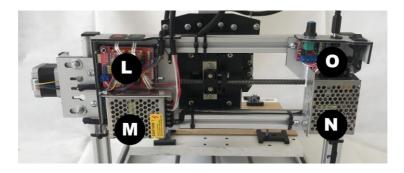
D: Spindle – Motor 775

E: Mandril ER-11

F: Quadro de Alumínio

G: Suporte de eixo

H: Fuso


I: Eixo retificado

J: Suporte de motor de passo

(1)

K: Motor de passo

PIPO 2024 - Manual do usuário

L: Unidade de controle dos eixos

M: Fonte de alimentação da Unidade de controle dos eixos

N: Fonte de alimentação do motor O: Unidade de controle do motor

(1) O aspecto e cor dos suportes de motor de passo, bem como de outras partes de sua CNC podem variar e não serem representadas fielmente nas imagens.

Cabo USB

Sua CNC acompanha um cabo USB, que você usará para transferir seus trabalhos entre o computador e o equipamento.

Você pode adquirir um cabo mais longo caso seu espaço exija que o computador esteja mais distante, no entanto recomendamos que este cabo não seja superior a 3 metros e que possua um supressor de ruídos em ao menos uma de suas extremidades.

Nota: Cabos mais longos ou sem um supressor não irão danificar sua CNC, mas podem ocasionar erros durante a usinagem de suas peças em decorrência de captações de ruídos ou campos elétricos do ambiente.

Preparação e Manutenção

Dedique um local específico para sua CNC que reúna estas características

- Ambiente com instalação elétrica conforme as Normas ABNT e itens de proteção obrigatórios por lei.
- A mesa ou suporte onde a CNC ficará deve ser plano e firme, com áreas livres ao redor e de fácil acesso a todos os lados da máquina.
- O ambiente deve ser seco, arejado e livre de componentes inflamáveis.
- Se o material que você usar em suas usinagens dispersar muitas partículas, pode ser necessário o uso de máscara e que você tenha um aspirador de pó no local.
- O ambiente elétrico deve estar livre de emissões ou campos elétricos provenientes de dispositivos como reatores, controles de velocidade ou qualquer outra emissão que provoque erros no funcionamento de sua CNC.

O espaço para o trabalho é importante e você deve considerar que

- Deve ter acesso à parte frontal e às laterais para posicionar o material a ser usinado.
- Deve ter acesso à parte superior para controlar o motor e eventuais pausas.
- Deve ter acesso à parte posterior para monitoramento e segurança.

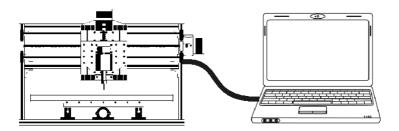
Manutenção

Lubrificação

Periodicamente proceda com as seguintes rotinas de manutenção para manter o bom funcionamento e precisão de seu equipamento.

Com ajuda de um pincel macio, remova toda poeira e partículas sólidas dos eixos, fusos e parte móveis e os lubrifique com óleo lubrificante multiuso ("óleo Singer"). Para facilitar a lubrificação, use um pincel umedecido com óleo e movimente os carros/bandeja por todo o curso para garantir que todo o eixo esteja lubrificado.

Se as operações de corte e usinagem emitirem muitas partículas, efetue este procedimento com maior frequência para garantir a contínua precisão de sua máquina.


Estrutura

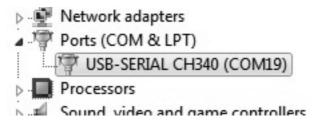
Mantenha a estrutura limpa e use apenas um pincel seco e macio para fazer a limpeza de sua máquina.

A usinagem de materiais causa vibrações em todo o conjunto. Por conta disso, examine todos os parafusos de sua CNC periodicamente e aperte todos que apresentarem folgas.

IMPORTANTE! Antes de iniciar a limpeza ou manutenção, desconecte o equipamento da rede elétrica, retire o cabo USB e evite movimentos bruscos nas conexões dos módulos.

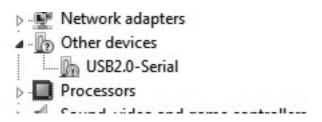
Instalação

Comece conectando seu computador na CNC através do cabo USB que acompanha seu equipamento. Na parte lateral da traseira de sua Pipo2024 há um conector USB onde você deve conectar o cabo.



Se você utiliza o Windows (versão 7 ou superior), por padrão o reconhecimento da CNC será automático, mas se seu Windows não reconhecer a CNC, será preciso instalar o driver adequado.

Neste caso, visite o website **www.dobit.com.br** e baixe o driver na seção download. Na página de Suporte há as instruções de instalação.


A instalação do driver é feita uma única vez, e sempre quando se conecta a CNC pela primeira vez a uma porta USB do computador.

Para saber se seu computador com Windows reconheceu sua CNC basta abrir o **Painel de Controle**, e no **Gerenciador de Dispositivos** localizar o item **CH340** como se vê na imagem a seguir:

Note que no exemplo acima foi atribuído o nome "COM19" ao driver. No seu caso pode ser diferente, mas você deve anotar o número de COM que encontrar. Principalmente se você já possui algum outro dispositivo que também use portas de comunicação tipo COM.

Mas, se ao invés de encontrar algo semelhante à imagem acima, você encontrar um item como o visto na imagem a seguir, será preciso corrigir o driver.

O item surge ao lado de um sinal de interrogação em fundo amarelo em **Outros dispositivos.** Neste caso o driver não foi reconhecido, e para corrigir o problema visite a seção suporte no site **www.dobit.com.br**.

Softwares necessários

Após concluir a instalação do driver, você precisará dos softwares para criação dos desenhos e peças que irá gravar, cortar ou usinar em sua Pipo 2024.

O processo envolve 3 passos, que podem ser feitos através de diversos softwares disponíveis no mercado, mas que neste manual faremos através de aplicativos gratuitos e que estão disponíveis para download no site **www.dobit.com.br**

- **Inkscape** Usado para desenhar a gravação ou peça
- JSCut Usado para determinar como o desenho será feito no material
- Candle / GRBLControl Usado para transferir o trabalho do computador para sua CNC

O processo que vai da criação da peça, até sua usinagem, é feito nestes 3 passos:

- <u>Criação do desenho da peça</u>, no formato SVG, que pode ser feito no Inkscape ou qualquer outro software de desenhos como CorelDraw ou Illustrator.
- 2. <u>Transformação do desenho em G-Code</u>, que é o código que a CNC entende, e faremos com o JSCut.
- 3. <u>Envio do G-Code para a CNC</u>, durante a usinagem da peça, que é feito pelo Candle/GRBL Control.

Importante!

Neste manual indicamos apenas softwares básicos e apenas como referência, para facilitar o trabalho de quem nunca operou uma CNC.

Se você já tem conhecimentos, você pode utilizar os softwares

de sua escolha e que oferecem resultados mais sofisticados.

Os critérios são:

- G-Code: O software deve ser capaz de gerar arquivos (paths) no formato G-Code para fresagem (milling), e compatíveis com GRBL.
- **Streaming:** O Software deve ser capaz de enviar o G-Code para o GRBL.

Há no mercado uma infinidade de softwares compatíveis com sua PIPO2024, e alguns capazes de fazer relevos complexos como o Artcam ou Aspire, ou produção de circuito impresso como o Eagle, e mais uma infinidade de opções.

GRBL

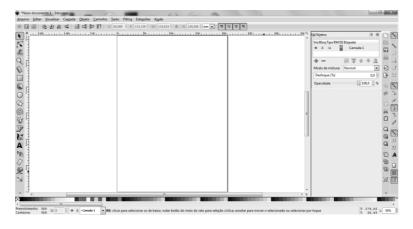
Antes de iniciar seu aprendizado é importante entender o que é o GRBL.

Uma usinagem é o resultado de comandos que o computador envia para a CNC. Esta recebe os comandos e os executa sobre o material exatamente como você definiu.

Quando você define como será uma usinagem, você estará na verdade "programando" uma usinagem, e este programa é feito em uma linguagem chamada Código G ou "gcode".

O GRBL é um interpretador de códigos G que fica instalado em sua CNC. Ele funciona como em sua Pipo2024 como se fosse o sistema operacional dela e fica instalado em um microcontrolador. A isso se dá o nome de "firmware".

Portanto, GRBL é o firmware de sua CNC e é ele o responsável por interpretar e executar os comandos que chegam do computador.

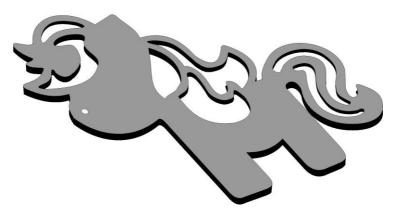

Por isso é importante que os softwares que você usar para se comunicar com a CNC, bem como os gcodes que você gerar, sejam compatíveis com o GRBL.

Software 1 - Desenho

O primeiro software que você precisará será o responsável pela criação dos desenhos que serão gravados ou usinados em sua Pipo 2024. Neste manual usamos o **Inkscape**, que é gratuito e pode ser baixado no website **www.inkscape.org** Mas, se você preferir, pode utilizar o **CorelDraw**, **Adobe Illustrator** ou qualquer outro editor de imagens vetorizadas que permita salvar os desenhos no formato **SVG**.

Importante! Este manual não se destina ao ensino de produção de desenhos em nenhum software. Você já deve ter conhecimento ou procurar informações em cursos ou aulas gratuitas na internet. Na área de download do site **www.dobit.com.br** há links para portais que oferecem desenhos gratuitos no formato SVG

O Inkscape



A janela do Inkscape tem o aspecto acima. Trata-se de um software completo para desenhos vetoriais e que permite salvar o trabalho com a extensão necessária para usinagem em CNC, que é o formato **SVG**.

Aqui você verá o conceito de desenho 2D de uma peça que pode ser em 3D, usando o Inkscape ou qualquer outro software já descrito anteriormente.

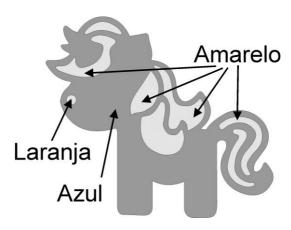
Se você deseja fazer o recorte de uma letra ou uma imagem, basta prepara-la no Inkscape e salvar o desenho como SVG, mas se você pretende produzir uma peça que possui furos e cavidades em diferentes alturas ou larguras, será preciso "pensar em 3D" em um desenho 2D.

Observe a imagem a seguir. Iremos ver como desenhar esta peça. As partes em cinza claro serão cortes que vão atravessar toda a peça, a narina — em branco — será um rebaixo na peça de poucos milimetros, e em cinza escuro temos o contorno da peça, que dará sua forma final.

Todo o contorno, curvas e furos serão feitos por uma fresa a 180 graus, portanto devemos desenhar a peça como se a estivéssemos vendo por cima, e nosso desenho deve ser como a imagem a seguir.

PIPO 2024 – Manual do usuário

Perceba que você não deve se preocupar neste momento com a altura ou profundidade de nenhum elemento. Tudo que você deve fazer é apenas marcar todas as formas e elementos da peça. E, para facilitar seu trabalho nos passos seguintes, é preciso que você use cores específicas para cada tipo de elemento.


Você pode usar as cores que desejar, mas para evitar confusões, faça seus desenhos usando este padrão:

Azul: Corpo da peça

Amarelo: Furos que atravessem toda a peça

Laranja: Cavidades que não atravessem toda a peça

Usando este padrão de cores, nosso desenho ficará como a imagem a seguir:

Dica: O uso das cores irá facilitar seu processo de desenvolvimento de peças e o uso de um padrão irá tornar tudo mais fácil.

Agora que você já tem seu desenho pronto, é hora de prepara-lo para que a CNC consiga reproduzi-lo.

Salve o desenho no formato SVG em uma pasta com o nome de "unicornio.svg", e vamos para o próximo passo.

Dicas importantes:

- Todas as formas devem ser "curvas". O CorelDraw trata círculos como "elipses", e isto não é aceito nas etapas seguintes.
- Furos e cortes internos de uma peça devem ser desenhados como objetos, e não como "trims" (recortes) da peça principal. Ou seja, se você deseja fazer um furo na peça, desenhe um circulo nas dimensões do furo e o posicione sobre o corpo peça.
- Existem websites que fornecem desenhos prontos no formato SVG e que estão disponíveis na seção de download do site www.dobit.com.br.

Software 2 - JSCut

O JSCut é uma ferramenta online onde você irá transformar o seu desenho no código de programação (G-Code) que é enviado para a CNC. Existem plug-ins para o Inkscape que fazem o mesmo, mas <u>sugerimos evitar</u> por conta de imperfeições que podem causar na usinagem.

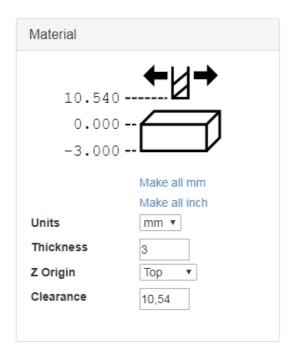
O JSCut é uma aplicação muito simples, mas que requer conhecimento e percepção, e tem o aspecto a seguir.

Para acessar o JSCut, você deve acessar o endereço **www.dobit.com.br** e clicar no link **JSCut Online** que fica na aba **"Suporte"** ou **"Download"**.

Neste tutorial iremos descrever as principais características do **JSCut** e que você usará na maioria dos seus trabalhos, e vamos usar o unicórnio visto anteriormente como exemplo.

Apenas para relembrar, criamos o desenho no **Inkscape** usando o esquema de cores descrito no capitulo anterior e salvamos como "unicornio.svg".

PIPO 2024 - Manual do usuário



Nosso procedimento será:

- 1. Abrir o arquivo SVG no JSCut
- 2. Ajustar as configurações de usinagem
- 3. Ajustar as configurações do material
- 4. Definir como será a usinagem da peça.

Agora vamos ao passo a passo

- 1. O primeiro passo é abrir o desenho no JSCut, através do item "OPEN SVG" que está no topo da tela.
- 2. Já com o desenho aberto na tela, vamos ajustar as características do material que iremos usinar. Observe o lado direito da página e encontre a caixa "MATERIAL" como se vê na imagem a seguir.

Nesta aba informamos dados básicos do material. No nosso exemplo estamos usando uma chapa de MDF com 3 mm de espessura, e vamos ajustar desta maneira:

Make all mm: Clique para que todos os ajustes sejam em milímetros, ou...

Make all inch: Clique para que todos os ajustes sejam em polegadas. (Mas trabalhe apenas em **mm**)

Units: A opção mm será habilitada automaticamente

Thickness: Informe a espessura do material a ser usinado. No exemplo será 3mm, pois esta é a espessura do MDF.

Z Origin: Informa onde será o ponto 0 (zero) do eixo Z.

Top – A contagem inicial será a parte superior do material **Bottom** – A contagem inicial será a base do material Use a opção 'Top', pois iremos ter a superfície do material como ponto zero do eixo Z.

Cleareance: Quantos mm (ou polegadas) a fresa deverá subir para trafegar sobre o material enquanto não está cortando. Alguns materiais exigem que este espaço seja maior para evitar que a fresa toque em parafusos ou outros obstáculos do material. Mantenha com 2,5mm.

3. O ajuste seguinte será definir como a ferramenta irá usinar sobre o material. Localize no canto inferior esquerdo da página a seção "Tool (shared for all operations)", como se vê na imagem a seguir.

Tool (shared for all operations)		
Units	mm 🕶	
Diameter	mm	1,5
Angle	degrees	180
Pass Depth	mm	0,8
Step Over	(0, 1]	0,4
Rapid	mm/min	500
Plunge	mm/min	30
Cut	mm/min	140

Os ajustes são feitos como se vê abaixo:

Units: Irá se ajustar automaticamente em milímetros ou polegadas. No nosso caso, o campo estará em 'mm'

Diameter: Você deve informar o diâmetro em 'mm' da fresa utilizada no trabalho. Em nosso exemplo usamos uma fresa com 1,5mm de diâmetro com corte reto.

Angle: Para fresas retas, use 180. Para fresas de ponta angulada, informe quantos graus tem a cabeça da fresa. Em nosso exemplo usamos 180.

Pass Depth: O quanto a fresa deve penetrar no material a cada passo. Quanto mais duro for o material, menor deve ser o valor deste campo. Em nosso exemplo usaremos 0,8mm de profundidade em cada passada.

Step Over: Qual o deslocamento lateral da fresa em rebaixos. Manteremos 0,4 que significa 40% do diâmetro da fresa

Rapid: A velocidade que a ferramenta irá se mover enquanto passa de um ponto ao outro sem cortar a peça. O limite da Pipo2024 é de 500mm/min e qualquer valor acima disso não é passado para a CNC.

Plunge: Qual a velocidade que a fresa deve descer perfurando o material. Use sempre baixas velocidades e manteremos em 30mm/min

Cut: a velocidade com a fresa se move horizontalmente cortando o material. Usaremos 140mm/min em nossa chapa de MDF.

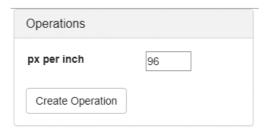
Os valores aqui são de exemplo, e devem mudar conforme a velocidade do spindle, a dureza do material, o tipo de corte da fresa e o acabamento desejado. Veja a seguir os critérios que você deve ter em mente:

Para materiais muito rígidos como alumínio ou HDF, você deve sempre ajustar para valores baixos em **Cut, Pass Depth, Plunge** e **Step Over**, pois o próprio material oferece muita resistência ao corte. Para materiais de média dureza como MDF você pode usar valores um pouco maiores, pois o material oferece menos resistência ao corte, mas não pode ser muito acelerado, pois a velocidade jamais poderá ser mais rápida que a capacidade de corte da máquina.

Para materiais macios como PEAD ou ACM você pode fazer ajustes mais rápidos, mas sempre observando o desempenho e segurança.

No nosso exemplo estamos cortando uma peça de MDF de 3mm de espessura, e iremos utilizar a velocidade máxima do spindle, por isso estamos usando os valores da imagem da página anterior.

4. Agora vamos definir como será o corte de cada parte do desenho.


Comece sempre pelas partes internas da peça. Iremos começar pelas partes vazadas, ou seja, aquelas onde a fresa fará um corte total na peça, e que em nosso desenho estão marcadas em amarelo.

Após selecionar estas áreas, o desenho ficará assim no JSCut:

Repare que depois de selecionadas, as áreas que estavam marcadas em amarelo no desenho ficam em azul, indicando que iremos definir como elas serão trabalhadas na CNC.

Mantenha as áreas marcadas e observe o campo "Operations" que fica do lado esquerdo do desenho. Ele tem o aspecto a seguir.

O primeiro campo é o "**px per inch**", e devemos preencher com um valor equivalente à resolução do software utilizado para fazer o desenho. No nosso caso, que usamos o **Inkscape**, o valor deve ser **90**, e há uma regra para isto:

Valores de "px per inch":

Inkscape 0.9x: 96Inkscape 0.4x: 90Adobe Illustrator: 72

• CorelDraw: 96

Se você utiliza outro software de desenho, deverá fazer testes. Basta desenhar uma peça com tamanho definido e alterar o valor até que a peça seja usinada no mesmo tamanho.

Este ajuste é feito uma única vez, e agora é hora de definir como será o recorte da parte do desenho que deixamos selecionada. Para isto, clique "Create Operation", e a caixa "Operations" ficará desta forma.

As áreas selecionadas do desenho ficarão na cor preta, e surgirá uma linha com as seguintes opções.

- Uma Caixa de ticar
- Drop-down com as opções:

- Pocket
- Inside
- Outsite
- Engrave
- V-Pocket
- Um campo numérico, que indica a profundidade da peça que deve ser usinada.
- E o link "Generate"

Vamos entender o que cada um representa.

A **caixa de ticar** indica se aquela área será usinada ou não. Mantenha-a selecionada.

As opções do Drop-down informam como será a usinagem daquela área do desenho:

- Pocket. Serve para rebaixamentos e sedes. A fresa irá "desgastar" a peça criando um afundamento, e fará isso em várias passadas. Quanto menor for o campo "Step Over", mais passadas serão dadas uma ao lado da outra, e melhor ficará o acabamento.
- Inside. Serve para furos na peça. A fresa fará o corte pela parte de dentro do traço do desenho selecionado.
- Ousite. Serve para finalizar a peça. A fresa fará o corte pela parte de fora do traço do desenho.
- **Engrave**. Serva para gravações. A fresa irá acompanhar o contorno do desenho.
- V-Pocket. Serve para acabamentos idênticos ao Pocket, mas feitos com fresas que tenham cabeça em ângulo.

O campo numérico informa qual a profundidade que a operação deve ter na peça.

Se a peça tem 10mm, e você usar uma operação Pocket para criar um rebaixamento de 5mm, basta informar o número 5 neste campo. O link "generate" irá gerar a operação, e você poderá vê-la marcada na área selecionada do desenho.

No nosso exemplo, faremos as áreas vazadas, e portanto usamos a opção "inside", e com profundidade de 3,2mm em nosso MDF de 3mm.

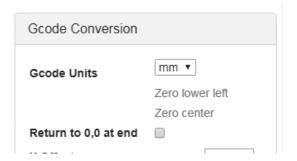
Nota: Usamos 3,23mm e não apenas 3mm para evitar erros e garantir que a peça seja usinada até o fim. Na parte que trata de usinagem este manual você terá maiores informações sobre esta técnica.

Após clicar em "Generate", nossas áreas de desenho recebem traços pretos e amarelos, que indicam exatamente onde a fresa passará sobre o MDF.

A imagem a seguir mostra como ficou o desenho:

Já temos as áreas vazadas do desenho definidas. Agora vamos definir como operar para fazer um pequeno furo que representa a narina do unicórnio, e que é um pequeno círculo laranja em nosso desenho. Basta selecionar o circulo no desenho e clicar em "**Create Operation**". E como a narina não atravessa toda a peça, escolhemos a opção "**Pocket**" e definimos a profundidade de 1mm.

O resultado se vê na imagem a seguir:


A última parte consiste em fazer o contorno final da peça. E o processo é o mesmo, bastando mudar a operação para "Outline".

Ou seja, você seleciona a parte azul do desenho, clica em Create Operation, e define a operação como "Outline" e profundidade de 3,2mm. E por fim clica em Generate.

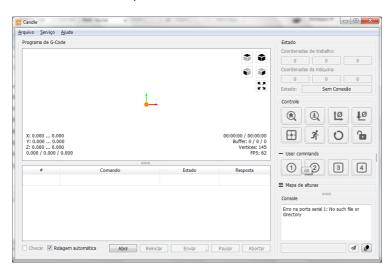
O resultado se vê a seguir:

Agora temos todas as áreas do desenho definidas, localize a área Gcode Conversion e clique em "Zero lower left" e marque a opção "Return to 0,0 at end".

Agora já podemos salvar o código para usar na CNC. Basta clicar em "Save GCode" e salvar o arquivo em uma pasta conhecida de seu computador.

Importante.

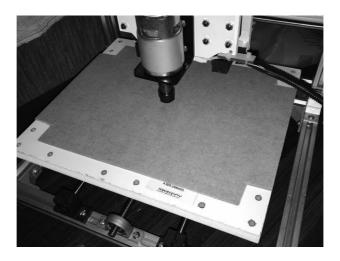
- A usinagem na peça irá obedecer aos comandos que você definir, e na mesma ordem que você os criar no JSCut.
- Lembre-se que o contorno da peça deve ser sempre a ultima parte a ser usinada.
- Atenção com as velocidades informadas no JSCut.
- Revise tudo antes de salvar
- Os arquivos tipo "GCODE" que você criar no JSCut podem ser utilizados para usinagem sempre que você precisar, não sendo mais necessário refazer todo o processo de desenho e configuração no JSCut.


Software 3 – Candle / GRBL Control

Você já criou seu desenho no formato SVG, já fez as definições de usinagem no JSCut e agora chegou o momento de usinar sua peça.

Recomendamos om software **Candle / GRBL Control** para enviar os códigos gerados no JSCut para a CNC. Existem diversos outros capazes de fazer esta função, e a maioria gratuitos, mas optamos pelo Candle principalmente por sua versatilidade e recursos disponíveis.

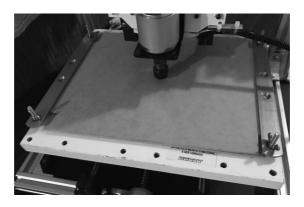
Você pode baixar sua cópia diretamente do website **www.dobit.com.**


O GRBL Tem este aspecto:

Assim que é aberto o Candle já estabelece conexão com sua Pipo2024. Caso o marcador **Estado** indicar "**Sem Conexão**" você deve clicar no **Menu Serviço> Opções** e na aba **Conexões** selecionar a porta adequada e manter a velocidade (baud) em **115200**.

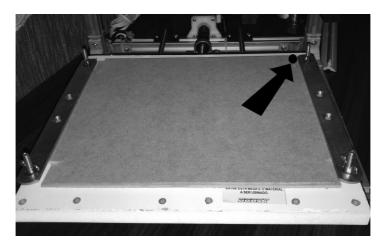
Após a conexão ser estabelecida, o o marcador **Estado** indica "Em espera" e sua CNC estará pronta para operar.

Vamos começar com nosso exemplo, usinando a imagem de um unicórnio em uma peça de MDF de 3mm de espessura. O primeiro passo é ajustar a peça sobre a mesa de sua CNC. Para isso, comece apoiando sobre a peça a "tábua de sacrifício".

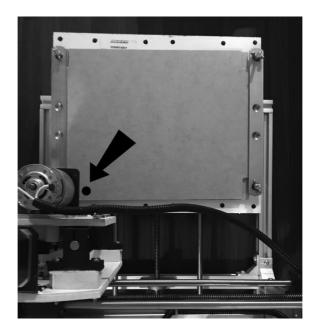


Dica:

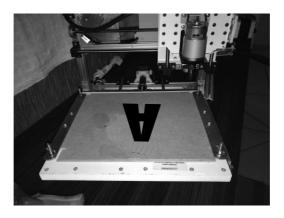
Tábua de sacrifício é o nome que se dá a uma chapa de madeira plana que se usa entre a bandeja da CNC e o material a ser usinado. A função desta chapa é proteger a bandeja e a fresa de excessos verticais na usinagem e você deve conhecer a espessura desta chapa. Se você programar o G-Code no JSCut com excesso, este excesso deve ser inferior à espessura da "tábua de sacrifício", para não atingir a mesa de apoio da CNC.


Sobre a tábua de sacrifício você coloca a peça a ser usinada, e fixa ambas com as hastes que acompanham sua CNC.

PIPO 2024 - Manual do usuário


O passo seguinte é deixar os eixos da CNC no ponto zero (home).

O Ponto zero de sua máquina está localizado no canto superior direito da mesa (se você olhar a máquina de frente)



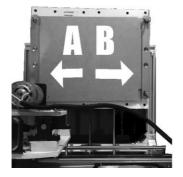
Ou, se você observar a máquina por cima, no canto inferior esquerdo da mesa.

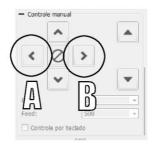
PIPO 2024 - Manual do usuário

Observando um desenho qualquer que fosse "desenhado" pela CNC, veríamos algo como se vê na imagem a seguir.

Ou seja, se observar diante da CNC uma peça sendo usinada, ela seria vista invertida ("de cabeça para baixo").

Para levar o spindle até o ponto zero você irá usar os controles direcionais do Candle/GRBL Control.


Antes de pressionar os botões, examine o campo **Passos** e mantenha-o em 10. Isso significa que cada vez que você pressionar um dos botões, o spindle irá se mover 1mm.

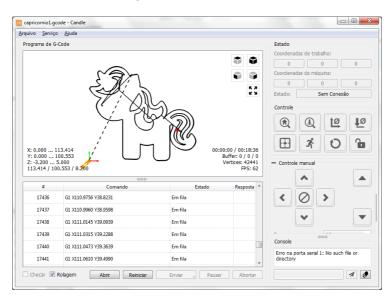

Agora, comece pressionando os botões verticais, que movem o **eixo Z** para cima ou para baixo.

Em seguida, observe a máquina por cima, se posicionando atrás dela, e mova o **eixo X**, como se vê a seguir.

E, por fim, faça o mesmo com o eixo Y

Entenda:

O movimento dos eixos X e Y precisam sem vistos por trás e por cima pois a máquina executa o trabalho do mesmo modo que você escreve ou desenha: Com o papel diante de você.


Note ainda que o movimento do eixo Y parece invertido, mas na verdade você deve imaginar ele percorrendo o desenho. Imagine a fresa como uma caneta e a mesa como um papel. Quando a caneta sobe podemos entender que o papel desce.

Com o tempo você passará a entender os movimentos e controlar sua CNC estando em qualquer posição diante dela. Após os primeiros movimentos você pode aumentar o deslocamento para a posição 10 (10mm) no campo "Passos" e levar os eixos X e Y para que o Spindle fique no ponto zero. Feito isto, levante o eixo Z ao máximo e insira a fresa no mandril ER-11, e prenda-o com o auxilio de duas chaves de boca.

Agora já podemos carregar o gcode do desenho para iniciar o trabalho.

Clique em "**Arquivo > Abrir**" e selecione o arquivo com extensão"unicornio.gcode" que foi criado no JSCut.

Com o arquivo aberto, será possível ver o traçado que a fresa fará como se vê a seguir.



Agora, ligue o spindle e use os controles direcionais do eixo Z para descer a fresa até que ela toque no material a ser usinado. Neste momento, será preciso calibrar o ponto zero de todos os eixos.

Basta pressionar os botões "**Zero XY**" e "**Zero Z**",marcados abaixo.

Agora, basta clicar em "**Begin**" e aguardar que a peça seja usinada.

Se todas as configurações foram feitas conforme este manual, ao fim da usinagem o motor irá voltar ao ponto zero e a peça estará pronta.

Botões Pausa e Continua

Durante a usinagem de suas peças pode ser preciso alguma pausa de emergência, para ajustes ou limpeza do material. Para estes casos basta pressionar o botão **Pausa** que todo o movimento dos eixos será interrompido, e para continuar pressione o botão **Continua.**

Dica! Se você pressionar ao botão Pausa sem que um trabalho tenha começado, o campo **Estado** do software ficará

na cor amarela e as setas direcionais do Candle/GRBL Control deixam de funcionar, dando a impressão que a CNC não responde. Para resolver, basta clicar no botão Continua.

Nota Importante! As pausas tem um tempo limite, e você não deve manter um trabalho pausado por muito tempo. Neste caso, o firmware entende que o trabalho foi "esquecido" e um comando Stop é enviado automaticamente, finalizando o trabalho antes de ele ter sido concluído.

Lembre-se: o botão Pausa não desliga o spindle. Este deve ser desligado por você no botão **Liga Spindle.**

Auto Nivelamento

Seu equipamento conta com o recurso de auto nivelamento, e acompanha sondas para materiais condutores (metais e afins) e isolantes (plásticos, madeiras, etc.).

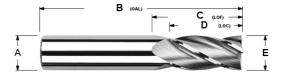
O auto nivelamento permite que seus cortes e gravações acompanhem qualquer ondulação ou imperfeição nos materiais que estão sendo usinados, permitindo acabamentos perfeitos mesmo em sulcos de apenas 0,1mm de profundidade.

Visite a área de suporte do website **www.dobit.com.br** para obter tutoriais completos de uso deste recurso.

Princípios de usinagem

Você deve compreender alguns conceitos de usinagem para tirar o maior proveito de sua CNC, manter a integridade de seu equipamento e produzir peças de alta qualidade no menor tempo possível.

Fresas


Fresas são semelhantes às brocas que todos conhecemos em furadeiras, mas, ao contrário de uma broca que foi desenvolvida unicamente para perfuração, as fresas possuem a capacidade de efetuar cortes em movimentos laterais.

Existem fresas para os mais diversos fins e resultados. Algumas são melhores para madeiras, outras para plásticos e outras para metais. Algumas oferecem acabamentos específicos e outras tem apenas o corte reto.

A escolha de sua fresa vai depender do material que você irá usinar e do acabamento que deseja ter.

As fresas possuem medidas que devem ser consideradas no momento da compra:

A: Diâmetro da haste

B: Comprimento total da fresa (OAL)

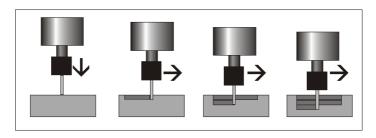
C: Comprimento da flauta (LOF)

D: Área de corte (LOC)

E: Diâmetro de corte

As medidas mais importantes a considerar são

Diâmetro de corte. Esta característica da fresa é quem irá determinar a largura do corte. Portanto, se você tem uma fresa com diâmetro de corte de 3mm, não conseguirá fazer cortes de 1,5mm. Ou, se sua fresa for de 1,5mm uma cavidade de 6mm de largura irá exigir muito mais passadas (e tempo).


Área de corte. Esta área deve ser maior ou igual à espessura do material a ser usinado. Uma fresa com área de corte de 10mm é incapaz de usinar uma peça com 15mm de espessura.

Diâmetro da haste. Sua CNC acompanha um mandril tipo ER-11 com pinça para fresas que tem diâmetro de haste de 1/8" (3,175mm). Se você precisar usar fresas com hastes mais grossas ou estreitas, será preciso adquirir pinças ER-11 adequadas.

Passadas (corte)

A grande maioria dos materiais exige que a CNC faça várias passadas da fresa sobre o material. E cada uma destas passadas é sempre mais profunda ou em paralelo à passada anterior.

A imagem abaixo ilustra o processo.

A CNC desce a fresa até o material e inicia a primeira passada de corte lateral.

Em seguida ela volta exatamente ao ponto onde começou a primeira passada e afunda um pouco mais a fresa, para então iniciar a segunda passada. E este processo continua até que o corte tenha sido terminado.

A velocidade e profundidade de cada passada depende, essencialmente de alguns fatores:

- Dureza do material a ser usinado
- Qualidade da fresa
- Velocidade do spindle

A dureza se observa pela resistência que o material faz aos cortes da fresa.

Uma peça de ACM (alumínio composto) de 3mm oferece menos resistência ao corte que uma peça de PEAD (polietileno de alta densidade) de mesma espessura. E uma chapa de MDF de 3mm é ainda mais resistente que os dois citados anteriormente.

Ou seja, a fresa precisa girar sobre a mesma parte do MDF muito mais vezes do que precisa girar sobre o ACM para romper o material e "abrir caminho" para o corte.

Sabendo-se que o giro sobre o mesmo espaço do material é quem define o rompimento de resistência, poderíamos afirmar que basta acelerar o spindle da CNC à sua velocidade máxima para usinar todos os materiais, não é?

Mas, altas velocidade do spindle e das passadas causam cortes menos precisos e de pior acabamento. Se sua peça precisa de acabamentos mais refinados, então a velocidade das passadas deve ser menor. Mesmo que o material ofereça pouca resistência ao corte.

Mergulho (plunge)

A velocidade com que a fresa penetra o material também é muito importante, e via de regra deve ser bem lenta.

Como dito anteriormente, as fresas são ferramentas de corte lateral e a perfuração vertical não é o "seu forte". Por isso devemos dar tempo que a fresa penetre lentamente no material antes de iniciar os cortes laterais.

Criar um código G-Code no JSCut com mergulho muito rápido da fresa sobre o material pode fazer a ferramenta derrapar sobre a peça, deixando marcas no material e prejudicando o acabamento.

A velocidade de 30mm/min é segura para os 3 materiais citados neste manual (ACM, PEAD e MDF) mas pode ser ainda menor em metais ou alguns plásticos. Faça seus testes

Profundidade das passadas (Pass Depth)

Já falamos sobre a influência da resistência do material sobre a velocidade de corte, e talvez você tenha pensado que há outro fator igualmente importante: a profundidade de corte em cada passada. Uma passada com corte mais profundo exige mais força de toda a CNC que uma passada de corte raso.

Entenda que, quanto mais contato a área de corte tiver com o material, maiores devem ser as forças para deslocamento e a capacidade de corte da fresa, e quanto mais rígido for o material, mais rasa deve ser a passada.

Atenção! A soma de velocidade de cortes altas com profundidades elevadas podem criar atritos grandes demais para o equipamento, que causam paralização do spindle, torcão dos eixos e danos em sua CNC.

Comece seus testes sempre com profundidades de corte baixas, e só aumente após se certificar que a profundidade não afeta o deslocamento nos eixos X ou Y.

Para materiais como MDF, ACM, PEAD ou LATÃO comece usando os valores a seguir com spindle em velocidade máxima.

PIPO 2024 - Manual do usuário

Material	Diâmetro da Fresa (reta de 2 cortes)	Profundidade (Pass Depth)	Corte (Cut)
ACM	1,5mm	Até 1,6mm	140 mm/min
ACM	3mm	Até 2,0mm	90 mm/min
LATÃO	1mm	Até 0,2mm	050 mm/min
PEAD	1,5mm	Até 0,8mm	100 mm/min
PEAD	3mm	Até 1,5mm	140 mm/min
MDF	1,5mm	Até 0,8mm	140 mm/min
MDF	3mm	Até 1,5mm	180 mm/min

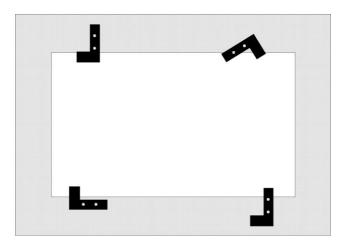
Note que os valores acima são para seus testes iniciais, e você pode alterá-los conforme sua necessidade ou capacidade máxima percebida em seus testes.

Dica: Você pode ganhar tempo no corte de materiais com grande espessura fazendo usinagens com maior profundidade e com a velocidade de corte bem reduzida. Deste modo, uma peça que exigiria mais passadas, fica pronta com menos passadas, mesmo que mais lentas, mas que no fim demandam menos tempo.

Iniciando uma usinagem.

Você deve seguir uma sequência de operações para ter uma usinagem perfeita.

1. Fixação da fresa.


Prenda a fresa firmemente no mandril com ajuda de duas chaves de boca. Fresas mal fixadas podem se soltar durante a usinagem, causando quebras e erros. Se a fresa se soltar e entrar no mandril os cortes ficarão com menos profundidade que o desejado. Se a

fresa se soltar pode ocorrer o afundamento excessivo no material, aumento de atrito, quebra da fresa e torções nos eixos da CNC.

2. Fixação do material.

Você pode usar os grampos que acompanham sua CNC para fixar o material ou parafusar o material diretamente na mesa através de parafusos. Lembrese que é importante utilizar uma "tábua de sacrifício" entre o material e a mesa de corte.

O material deve ser fixado de modo a ficar firme e plano em toda sua extensão.

Você irá descobrir que existem várias maneiras de fixar o material na mesa usando os grampos que acompanham sua Pipo2024.

3. Candle/GRBL Control

Abra o Candle/GRBL Control, acione a CNC no botão Open, e inicie o movimento clicando em uma das setas do eixo Z. Nota: verifique antes se o valor **Passos** é igual ou menor que 1, para evitar que o movimento inicial seja longo demais.

4. Posicionamento.

Posicione a fresa no ponto 0,0 (ou home) da mesa de corte, ou, se você vai usinar um recorte de material que já fui utilizado, no ponto inicial adequado sobre o material.

5. Ponto de origem do eixo Z

No JSCut você definiu se o corte será medido a partir da superfície da mesa (Z origin Bottom) ou superfície do material (Z origin Top). Tanto em um modo quanto no outro será preciso ajustar a fresa para que ela "saiba" onde deve iniciar o trabalho.

O modo mais simples de alcancar o inicio é

- a. Lique o spindle em velocidade baixa
- Abaixe o spindle até que ele se aproxime da superfície (o material ou a tábua de sacrifício, conforme seu caso).
- c. Com o spindle próximo da superfície, diminua o movimento para 0,01 e continue descendo lentamente e monitore se o som da fresa mudar pelo contato com o material.
- d. Quando se perceber a mudança do som da fresa, o contato com o material está feito, e você deve marcar aquele ponto como "0,0" nos botões "Zero XY" e "Zero Z".

6. Abrir o arquivo G-Code

Abra o arquivo g-code do trabalho a ser usinado e confira se o material tem espaço suficiente para receber a usinagem e se a fresa vai passar por algum ponto sem material (em caso de recortes) ou algum obstáculo como parafusos ou pregos. Tenha uma régua de 30cm em mãos para lhe auxiliar nesta tarefa.

7. Revisão final

Examine todo o conjunto em busca de obstáculos que possam obstruir os movimentos da CNC e se toda a lista acima foi executada, e quando tudo estiver

PIPO 2024 – Manual do usuário

revisado, comece a usinagem clicando em "Enviar" no Candle/GRBL Control.

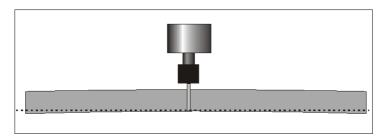
Apesar de parecer longa, a lista acima se tornará habitual após alguns dias de prática.

Gravação

A gravação difere de uma usinagem apenas na profundidade do corte e no tipo de fresa utilizada. As gravações são feitas com fresas pontiagudas e suas pontas são extremamente finas e fornecidas em ângulos (20 graus, 30 graus, etc.) . Para as gravações, as profundidades de corte são sempre mínimas, como 0,1mm 0,2mm ou 0,3mm, pois a ideia é apenas "riscar" o material com o desenho.

Como em todos os trabalhos, você deve testar e anotar as profundidades e velocidades adequadas para o tipo de material e de fresa utilizada, e sempre faça o trabalho com cuidado, pois as fresas de gravação podem se quebrar com um mergulho muito profundo no material, velocidade de corte muito acentuada ou qualquer outro tipo de ação que possa exigir muita pressão sobre a ponta da fresa.

Importante! Toda gravação requer que seja feito o auto nivelamento antes de se iniciar o trabalho, sob o risco de quebra da fresa ou falhas na gravação.


Prevenção e Aproveitameento

Existem algumas técnicas que podem melhorar o resultado de suas peças ou aumentar sua produtividade. Aqui você encontra algumas delas.

Acabamento do lado oposto dos Cortes

Uma das técnicas para que o lado oposto do material tenha um acabamento completo e sem rebarbas é configurar a profundidade de corte um pouco maior que a espessura total do material. Configurar a profundidade (deep) no JSCut com valor idêntico à espessura do material em alguns casos pode resultar em cortes imperfeitos ou incompletos.

Veja a imagem abaixo

A linha tracejada é o corte final, programado para ser na mesma profundidade que a espessura do material. Observe as extremidades da peça e veja que o corte não irá atravessar a peça nestes pontos, ou deixar uma película causando rebarbas e mau acabamento. Este fenômeno é comum quando o material a ser usinado é preso pelas duas bordas ou se já foi produzido com imperfeições.

Para evitar este tipo de problema, e garantir que o corte será uniforme por todo a peça, a técnica é configurar a usinagem no JSCut com profundidade um pouco maior.

Por exemplo: para fazer cortes em um material de 6mm de espessura, programe a profundidade (deep) para 6,5mm.

Neste exemplo se exige que a tábua de sacrifício tenha espessura maior que a sobra de 0,5mm. Portanto, uma chapa de MDF de 3mm usada como tábua de sacrifício receberia o excesso e garantiria que a mesa de corte não fosse atingida.

Aproveitamento de material

Você pode usinar suas peças aproveitando o máximo possível do material se usar as hastes de fixação no centro do material, deixando as bordas livres para usinagem. Nestes casos é importante lembrar que os pontos de fixação devem ser observados de modo a não permitir que a peça se mova durante a usinagem. Cuidado também com a velocidade de corte (cut), pois velocidades de corte muito altas forçam a peça lateralmente, e se esta estiver mal fixada o material pode se deslocar causando perda de material e de todo o trabalho.

Erro na Finalização

Um dos momentos críticos de uma usinagem é quando o trabalho está sendo terminado. Neste instante a peça pode se soltar do material antes do fim da última passada e se deslocar para frente da fresa. O resultado é que a peça será prejudicada e a CNC pode até mesmo se danificar caso ocorra algum travamento ou torção nos eixos.

Há varias técnicas para evitar que este tipo de situação ocorra, e você pode escolher a melhor para você.

1. Uso de fitas dupla-face.

Você pode fixar o material que será usinado na tábua de sacrifício com fitas colantes tipo dupla-face. Basta passar a fita por todo o material e colar na tábua de sacrifício, assim a peça se manterá colada na tábua de sacrifício quando o corte terminar. O inconveniente é que a cola do fita dupla face pode aderir na ponta da fresa.

2. Passadas com divisões inteiras.

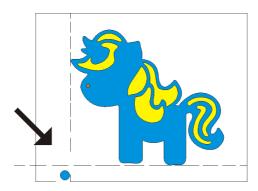
Você deve configurar a profundidade de cada passada de modo que a penúltima delas seja antes de se alcançar o fim da peça e a última seja mais profunda que a espessura total da peça. Ex.: Em uma peça de 10mm de espessura, passadas de 1,7mm garantem que a penúltima passada atinja 8,5mm. Deste modo, restam 1,5mm na peça, que garantem que ela se manterá presa até o fim da última passada.

3. Tabs

Este recurso é o mais profissional e está presente em todos os softwares de geração de código (CAM) e permitem manter um ou mais pontos de apoio entre a peça e o restante do material, evitando que a peça se solte até o fim do trabalho. Para aprender a usar este recurso, visite a página "Falhas no fim de corte" na área de suporte do site **www.dobit.com.br**.

Ponto 0 do eixo Z

A precisão dos cortes está diretamente relacionada com a compreensão que a CNC tem de onde começa o material. Existem dispositivos eletrônicos que trazem esta informação, mas a solução mais econômica é usando nossa audição. O segredo é ligar o spindle em velocidade baixa e manter a fresa próxima da superfície do material, mas sem que haja contato entre a fresa e o material. Ajuste o ponto 0,0 dos eixos X e Y para onde deve começar o trabalho. Neste ponto basta ir descendo o spindle lentamente com as setas do Candle/GRBL Control enquanto se presta toda a atenção ao som da fresa. Desça a fresa em passos bem pequenos, com **Step Size** de 0,1 ou 0,01 e quando se ouvir o primeiro ruído de contato da fresa com o material, clique nos botões **Zero XY** e **Zero Z**.

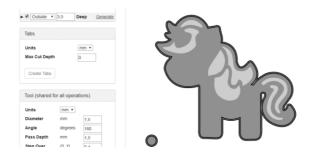

O ponto zero do eixo Z em materiais metálicos se obtem facilmente com o uso das sondas com garras jacaré que acompanham sua CNC, como explicado no tutorial sobre auto nivelamento no website www.dobit.com.br.

Troca de fresas em uma mesma peça

Há situações onde é preciso que a mesma peça receba cortes ou furações com diâmetros ou acabamentos diferentes, ou a combinação de corte e gravação. Para este tipo de situação, proceda como descrito a seguir.


Vamos imaginar que usaremos 2 fresas diferentes na usinagem de uma peça:

- Uma fresa reta de corte para o contorno
- Uma fresa com ponta de 30º para gravar os traços internos da peça.
- Desenhe a peça que será usinada normalmente, e inclua fora da área de contorno dela um círculo com diâmetro um pouco maior que o diâmetro da fresa mais grossa que será usada no trabalho. Vamos chamar este círculo de "Registro".



 Abrimos o desenho no JSCut e selecionamos apenas a área onde usaremos a fresa de gravação, e selecionamos também o Registro. Criamos a operação tipo **Engrave** e salvamos o G-Code especifico desta fresa.

PIPO 2024 - Manual do usuário

 Em seguida, criaremos um segundo G-Code apenas com as operações de corte da peça (operação Outside) e selecionamos também o Registro. E salvamos este novo arquivo G-Code.

Nota: Nos dois arquivos G-Code é importante deixar marcada a opção **Return to 0,0 at end.**

4. Agora, basta posicionar o Spindle com a primeira fresa no ponto 0,0 do material, abrir o primeiro arquivo G-Code e iniciar o processo de gravação normalmente. Quando este terminar, o Spindle irá voltar para a posição 0,0. Neste momento basta trocar a fresa, abrir o segundo arquivo G-Code e iniciar o corte da peça.

Lembre-se que você não deve alterar as posições dos eixos X e Y após o inicio dos trabalhos. Apenas o eixo Z pode ser alterado para ajuste da correta posição da fresa sobre o material

Alertas importantes!

Demais dúvidas ou soluções de problemas, visite www.dobit.com.br

Tenha cuidado com obstáculos!

- Os parafusos de fixação das hastes devem ter comprimento inferior a 45mm, sob risco de obstruírem o movimento dos eixos.
- A peça a ser usinada não deve ter largura maior que a mesa do eixo Y, sob risco de obstruir o movimento do eixo.
- Evite trafegar a fresa sobre superfícies com obstáculos usando baixo valor de "Clearance".

Tenha cuidado com excessos!

- Jamais avance os eixos além do limite, sob o risco de danificar sua CNC
- Jamais exerça pressão sobre os eixos ou bandejas, sob risco de empenar os eixos e danificar sua CNC.

Tenha cuidado com a elétrica!

- Jamais remova, mova ou altere a fiação de sua CNC
- Mantenha a área elétrica de sua CNC protegida de objetos soltos, choques, umidade, gases, ou materiais inflamáveis.

PIPO 2024- CNC Router

THE ZEET CITE REGISTER		
Motores de passo	Monofásicos 4kg.f	
Spindle	775 : 24V 11000 RPM	
Firmware	GRBL 1.1h	
Controle	Arduino Nano em Placa Studio	
Eixos trapezoidais	8mm / passo 2 pitch 2	
Alimentação	Bivolt automática Dupla: 12VDC / 24VDC	
Velocidade (modelo PWM)	Controle Eletrônico Linear de 0% a 100%	

Equipamento Projetado e Produzido no Brasil